Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.647
Filtrar
1.
Cancer Invest ; 42(2): 176-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38486424

RESUMO

The study investigates titanium and zinc nanoparticles as inhibitors for the epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2), pivotal regulators of cell processes. VEGFR-2 activation fuels tumor angiogenesis in cancer cells, sustaining malignant tissue expansion. Molecular docking analysis illustrates the nanoparticles' binding to the active sites, inhibiting the phosphorylation of key proteins in downstream signaling. This inhibition offers a promising therapeutic approach to impede cancer-related signaling, potentially slowing down aberrant protein cascades controlled by EGFR and VEGFR-2. The findings propose a novel avenue for cancer treatment, targeting abnormal growth pathways using titanium and zinc nanoparticles.


Assuntos
Receptores ErbB , Nanopartículas Metálicas , Neoplasias , Inibidores de Proteínas Quinases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Titânio/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Zinco , Ligação Proteica , Domínio Catalítico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico
2.
Anal Chim Acta ; 1287: 342126, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182396

RESUMO

BACKGROUND: The detection of cancer gene mutations in biofluids plays a pivotal role in revolutionizing disease diagnosis. The presence of a large background of wild-type sequences poses a challenge to liquid biopsy of tumor mutation genes. Suppressing the detection of wild-type sequences can reduce their interference, however, due to the minimal difference between mutant and wild-type sequences (such as single nucleotide variants differing by only one nucleotide), how to suppress the detection of wild-type sequences to the greatest extent without compromising the sensitivity of mutant sequence detection remains to be explored. SIGNIFICANCE: The RLP system addresses the incompatibility between RPA and RT-PCR reactions through a physical separation strategy. Besides, due to the remarkable flexibility of locked nucleic acid probes, the RLP system emerges as a potent tool for detecting mutations across diverse genes. It excels in sensitivity and speed, tolerates plasma matrix, and is cost-effective. This bodes well for advancing the field of precision medicine. RESULTS: The recombinase-assisted locked nucleic acid (LNA) probe-mediated dual amplification biosensing platform (namely RLP), which combines recombinase polymerase amplification (RPA) and LNA clamp PCR method in one tube, enabling highly sensitive and selective detection of EGFR T790M mutation under the help of well-designed LNA probes. This technique can quantify DNA targets with a limit of detection (LoD) at the single copy level and identify point mutation with mutant allelic fractions as low as 0.007 % in 45 min. Moreover, RLP has the potential for the direct detection of plasma samples without the need for nucleic acid extraction and the cost of a single test is less than 1USD. Furthermore, the RLP system is a cascading dual amplification reaction conducted in a single tube, which eliminates the risk of cross-contamination associated with opening multiple tubes and ensures the reliability of the results.


Assuntos
Técnicas Biossensoriais , Receptores ErbB , Neoplasias Pulmonares , Humanos , Receptores ErbB/química , Receptores ErbB/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação , Nucleotídeos , Recombinases , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
3.
J Biol Chem ; 299(7): 104914, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315787

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR's kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR's ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR.


Assuntos
Regulação Alostérica , Membrana Celular , Receptores ErbB , Peptídeos , Humanos , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Antineoplásicos/farmacologia
4.
Nanomedicine ; 50: 102669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933756

RESUMO

Epidermal Growth Factor Receptor (EGFR) is a promising therapeutic target for triple-negative breast cancer (TNBC). Recently, specific EGFR-targeting peptide GE11-based delivery nano-system shows excellent potential because of its chemical versatility and good targeting ability. However, no further research focusing on the downstream of EGFR after binding with GE11 was explored. Hence, we tailor-designed a self-assembled nanoplatform named GENP using amphiphilic molecule of stearic acid-modified GE11. After loading doxorubicin (DOX), the resulted nanoplatform GENP@DOX demonstrated high loading efficiency and sustainable drug release. Importantly, our findings proved that GENP alone significantly suppressed the proliferation of MDA-MB-231 cells via EGFR-downstream PI3K/AKT signaling pathways, contributing to the synergistic treatment with its DOX release. Further work illustrated remarkable therapeutic efficacy both in orthotopic TNBC and its bone metastasis models with minimal biotoxicity. Together, the results highlight that our GENP-functionalized nanoplatform is a promising strategy for the synergistic therapeutic efficacy targeting EGFR-overexpressed cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Receptores ErbB/química , Doxorrubicina/química , Peptídeos/farmacologia , Peptídeos/química
5.
Keio J Med ; 72(3): 88-92, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36948612

RESUMO

Gain-of-function mutations had been believed to function as a single mutation in oncogenes, although some secondary mutations, such as EGFR T790M mutations, are frequently acquired in patients that are resistant to tyrosine kinase inhibitor treatment. Recently, we and other investigators have reported that multiple mutations (MMs) frequently occur in the same oncogene before any therapy. In a recent pan-cancer study, we identified 14 pan-cancer oncogenes (such as PIK3CA and EGFR) and 6 cancer type-specific oncogenes that are significantly affected by MMs. Of these, 9% of cases with at least one mutation have MMs that are cis-presenting on the same allele. Interestingly, MMs show distinct mutational patterns in various oncogenes relative to single mutations in terms of mutation type, position, and amino acid substitution. Specifically, functionally weak, uncommon mutations are overrepresented in MMs, which enhance oncogenic activity in combination. Here, we present an overview of the current understanding of oncogenic MMs in human cancers and provide insights into their underlying mechanisms and clinical implications.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Humanos , Mutação , Receptores ErbB/genética , Receptores ErbB/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Oncogenes
6.
Eur Biophys J ; 52(1-2): 17-25, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36547692

RESUMO

Human epidermal growth factor receptor (EGFR) is involved in strong association with malignant proliferation, which has been shown to play a central role in the development and progression of non-small cell lung cancer and other solid tumors. The tumor-suppressor protein MIG6 is a negative regulator of EGFR kinase activity by binding at the activation interface of asymmetric dimer of EGFR kinase domain to disrupt EGFR dimerization and then inactivate the kinase. The protein adopts two discrete fragments 1 and 2 to directly interact with EGFR. It is revealed that the MIG6 fragment 2 is intrinsically disordered in free unbound state, but would fold into a well-structured ß-hairpin when binding to EGFR, thus characterized by a so-called coupled folding-upon-binding process, which can be regarded as a compromise between favorable direct readout and unfavorable indirect readout. Here, a 23-mer F2P peptide was derived from MIG6 fragment 2, trimmed into a 17-mer tF2P peptide that contains the binding hotspot region of the fragment 2, and then constrained with an ordered hairpin conformation in free unbound state by disulfide stapling, finally resulting in a rationally stapled/trimmed stF2P peptide that largely minimizes the unfavorable indirect readout effect upon its binding to EGFR kinase domain, with affinity improved considerably upon the trimming and stapling/trimming. These rationally designed ß-hairpin peptides may be further exploited as potent anti-lung cancer agents to target the activation event of EGFR dimerization.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Peptídeos/química
7.
J Phys Chem B ; 126(39): 7475-7485, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36169380

RESUMO

The epidermal growth factor (EGF) system has allowed chemists, biologists, and clinicians to improve our understanding of cell production and cancer therapy. The discovery of EGF led to the recognition of cell surface receptors capable of controlling the proliferation and survival of cells. The detailed structures of the EGF-like ligand and the responses of their receptors (EGFR-family) has revealed the conformational and aggregation changes whereby ligands activate the intracellular kinase domains. Biophysical analysis has revealed the preformed clustering of different EGFR-family members and the processes which occur on ligand binding. Understanding these receptor activation processes and the consequential cytoplasmic signaling has allowed the development of inhibitors which are revolutionizing cancer therapy. This Review describes the recent progress in our understanding of the activation of the EGFR-family, the effects of signaling from the EGFR-family on cell proliferation, and the targeting of the EGFR-family in cancer treatment.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/química , Ligantes , Fosforilação , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 119(30): e2206588119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867821

RESUMO

Oncogenic mutations within the epidermal growth factor receptor (EGFR) are found in 15 to 30% of all non-small-cell lung carcinomas. The term exon 19 deletion (ex19del) is collectively used to refer to more than 20 distinct genomic alterations within exon 19 that comprise the most common EGFR mutation subtype in lung cancer. Despite this heterogeneity, clinical treatment decisions are made irrespective of which EGFR ex19del variant is present within the tumor, and there is a paucity of information regarding how individual ex19del variants influence protein structure and function. Herein, we identified allele-specific functional differences among ex19del variants attributable to recurring sequence and structure motifs. We built all-atom structural models of 60 ex19del variants identified in patients and combined molecular dynamics simulations with biochemical and biophysical experiments to analyze three ex19del mutations (E746_A750, E746_S752 > V, and L747_A750 > P). We demonstrate that sequence variation in ex19del alters oncogenic cell growth, dimerization propensity, enzyme kinetics, and tyrosine kinase inhibitor (TKI) sensitivity. We show that in contrast to E746_A750 and E746_S752 > V, the L747_A750 > P variant forms highly active ligand-independent dimers. Enzyme kinetic analysis and TKI inhibition experiments suggest that E746_S752 > V and L747_A750 > P display reduced TKI sensitivity due to decreased adenosine 5'-triphosphate Km. Through these analyses, we propose an expanded framework for interpreting ex19del variants and considerations for therapeutic intervention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Éxons , Neoplasias Pulmonares , Alelos , Motivos de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ativação Enzimática/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Éxons/genética , Humanos , Cinética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Deleção de Sequência
9.
Appl Biochem Biotechnol ; 194(12): 6106-6125, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35895251

RESUMO

Lung cancer is the second most prevalent carcinoma around the world, and about 80% of patients are of non-small cell lung cancer (NS-CLC). Epidermal growth factor receptor (EGFR) is the most expressed protein kinases in lung cancer and hence can be used in target-related anti-cancer therapy. Here, computational approach is used for the exploration of the anti-cancer potential of new steroid derivatives as previously no in vitro data was available for them. Initially, DFT calculations of all compounds were determined to analyze the electronic density of optimized structures. The HOMO and LUMO orbital analysis of all derivatives was analyzed, to investigate the reactivity of compounds. Afterwards, optimized structures were used for molecular docking studies in which all ouabagenin derivatives were docked within the EGFR active site using MOE software. Moreover, anti-cancer potential of selected derivatives was evaluated on the basis of binding interactions with three anti-cancer proteins. The binding scores of these compounds were compared with the FDA-approved drug, i.e., gefitinib. The findings of current study suggested that selected derivatives exhibited significant inhibiting potential of anti-cancer proteins and EGFR. Particularly, compound OD3 is the potent inhibitor of anti-cancer and EGFR protein with the highest binding energies. These novel steroidal derivatives are subjected to in silico analysis for the first time against lung cancer. These compounds possess potential anti-cancerous properties and can be explored further for in vitro and in vivo studies.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Simulação de Acoplamento Molecular , Receptores ErbB/química , Receptores ErbB/metabolismo , Corticosteroides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
10.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563452

RESUMO

We investigated the feasibility of detecting the presence of specific autoantibodies against potential tumor-associated peptide antigens by enriching these antibody-peptide complexes using Melon Gel resin and mass spectrometry. Our goal was to find tumor-associated phospho-sites that trigger immunoreactions and raise autoantibodies that are detectable in plasma of glioma patients. Such immunoglobulins can potentially be used as targets in immunotherapy. To that aim, we describe a method to detect the presence of antibodies in biological samples that are specific to selected clinically relevant peptides. The method is based on the formation of antibody-peptide complexes by mixing patient plasma with a glioblastoma multiforme (GBM) derived peptide library, enrichment of antibodies and antibody-peptide complexes, the separation of peptides after they are released from immunoglobulins by molecular weight filtration and finally mass spectrometric quantification of these peptides. As proof of concept, we successfully applied the method to dinitrophenyl (DNP)-labeled α-casein peptides mixed with anti-DNP. Further, we incubated human plasma with a phospho-peptide library and conducted targeted analysis on EGFR and GFAP phospho-peptides. As a result, immunoaffinity against phospho-peptide GSHQIS[+80]LDNPDYQQDFFPK (EGFR phospho-site S1166) was detected in high-grade glioma (HGG) patient plasma but not in healthy donor plasma. For the GFAP phospho-sites selected, such immunoaffinity was not observed.


Assuntos
Anticorpos , Receptores ErbB , Glioma , Peptídeos , Anticorpos/química , Autoanticorpos , Bioensaio , Receptores ErbB/química , Receptores ErbB/metabolismo , Glioma/imunologia , Glioma/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Biblioteca de Peptídeos , Peptídeos/química , Fosfopeptídeos/química , Ligação Proteica
11.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164092

RESUMO

Lung cancer has a high prevalence, with a growing number of new cases and mortality every year. Furthermore, the survival rate of patients with non-small-cell lung carcinoma (NSCLC) is still quite low in the majority of cases. Despite the use of conventional therapy such as tyrosine kinase inhibitor for Epidermal Growth Factor Receptor (EGFR), which is highly expressed in most NSCLC cases, there was still no substantial improvement in patient survival. This is due to the drug's ineffectiveness and high rate of resistance among individuals with mutant EGFR. Therefore, the development of new inhibitors is urgently needed. Understanding the EGFR structure, including its kinase domain and other parts of the protein, and its activation mechanism can accelerate the discovery of novel compounds targeting this protein. This study described the structure of the extracellular, transmembrane, and intracellular domains of EGFR. This was carried out along with identifying the binding pose of commercially available inhibitors in the ATP-binding and allosteric sites, thereby clarifying the research gaps that can be filled. The binding mechanism of inhibitors that have been used clinically was also explained, thereby aiding the structure-based development of new drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos
12.
J Mol Graph Model ; 112: 108114, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34979367

RESUMO

Epidermal growth factor receptor (EGFR) is a validated drug target for cancer chemotherapy. Mutations in EGFR are directly linked with the development of drug resistance and this has led for the development of newer drugs in quest for more efficacious inhibitors. The current research is focused on identifying potential and safe molecules as EGFR inhibitors by using both structure and ligand based computational approaches. In quest for finding newer moieties, we have developed a pharmacophore model utilizing drugs like lazertinib, osimertinib, nazartinib, avitinib, afatininb, and talazoparib that are known to inhibit EGFR along with their downstream signaling. Ligand-based pharmacophore model have been developed to screen the ZINC database through ZINCPharmer webserver. The server has identified 9482 best possible ligands with high pharmacophoric similarity i.e., RMSD value less than 0.2 Å. The top 10 ligands with the criteria of dock score(s) and interactions were further subjected to in silico ADMET studies giving two plausible ligands that were further subjected to Molecular Dynamics and MM/PBSA free energy calculations to ensure stability to the target site. Results deduced by in silico work in the current study may be corroborated biologically in the future. The current work, therefore, provides ample opportunity for computational and medicinal chemists to work in allied areas to facilitate the design and development of novel and more efficacious EGFR inhibitors for future experimental studies.


Assuntos
Receptores ErbB , Inibidores de Proteínas Quinases , Receptores ErbB/química , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
13.
J Chem Inf Model ; 62(21): 5149-5164, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34931847

RESUMO

The epidermal growth factor receptor (EGFR) signaling pathway plays an important role in cell growth, proliferation, differentiation, and other physiological processes, which makes the EGFR a promising target for anticancer therapies. The discovery of novel EGFR inhibitors may provide a solution to the problem of drug resistance. In this work, we performed a ligand-based virtual screening (LBVS) protocol for finding novel EGFR inhibitors from a 5.3 million compound library. First, the 3D shape-based similarity was used to obtain structurally novel EGFR inhibitors. In this study, we tried three queries; two were crystal structures and one was generated from deep generative models of graphs (DGMG). Next, we have built four structure-activity relationship (SAR) models and three quantitative structure-activity relationship (QSAR) models based on an SVM method for further screening of highly active EGFR inhibitors. Experimental validations led to the identification of nine hits out of 18 tested compounds. Among them, hit 1, hit 5, and hit 6 had IC50 values around 80 nM against EGFR whose interactions with EGFR were further investigated by molecular dynamics simulations.


Assuntos
Inibidores de Proteínas Quinases , Relação Quantitativa Estrutura-Atividade , Inibidores de Proteínas Quinases/química , Receptores ErbB/química , Ligantes , Proliferação de Células , Simulação de Acoplamento Molecular
14.
Chem Biol Drug Des ; 99(3): 470-482, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34939319

RESUMO

Two series of quinoline-thiazole and quinoline-thiazolidinone hybrids were designed, synthesized, and evaluated for their in vitro antitumor activity on MCF-7 breast cancer cell line. In comparison with lapatinib (IC50  = 4.69 µM), compounds 4b and 6b exhibited the best antiproliferative activity with IC50 values of 33.19 and 5.35 µM, respectively. Although compound 6b showed higher cytotoxicity, compound 4b exhibited better inhibitory activity toward the epidermal growth factor receptor (EGFR) pathway than compound 6b as represented by the significant reduction in the EGFR kinase activity and the levels of phosho-EGFR and phosho-AKT when compared to lapatinib as a reference standard. Moreover, compound 4b was capable of down-regulating the anti-apoptotic genes Bcl-2 and survivin and up-regulating the level of the pro-apoptotic gene BAX. Molecular modeling study was carried out to predict the binding interactions of both compounds into the target kinase. Finally, the physicochemical properties were investigated in silico as well.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Quinolinas/química , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/metabolismo , Quinolinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
15.
Biotechnol Bioeng ; 119(1): 187-198, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676884

RESUMO

Cellular quiescence is a reversible state of cell cycle arrest whereby cells are temporarily maintained in the nondividing phase. Inducing quiescence in cancer cells by targeting growth receptors is a treatment strategy to slow cell growth in certain aggressive tumors, which in turn increases the efficacy of treatments such as surgery or systemic chemotherapy. However, ligand interactions with cell receptors induce receptor-mediated endocytosis followed by proteolytic degradation, which limits the duration of cellular quiescence. Here, we report the effects of targeted covalent affibody photoconjugation to epidermal growth factor receptors (EGFR) on EGFR-positive MDA-MB-468 breast cancer cells. First, covalently conjugating affibodies to cells increased doubling time two-fold and reduced ERK activity by 30% as compared to cells treated with an FDA-approved anti-EGFR antibody Cetuximab, which binds to EGFR noncovalently. The distribution of cells in each phase of the cell cycle was determined, and cells conjugated with the affibody demonstrated an accumulation in the G1 phase, indicative of G1 cell cycle arrest. Finally, the proliferative capacity of the cells was determined by the incorporation of 5-ethynyl-2-deoxyuridine and Ki67 Elisa assay, which showed that the percentage of proliferative cells with photoconjugated affibody was half of that found for the untreated control.


Assuntos
Morte Celular/efeitos dos fármacos , Receptores ErbB , Processos Fotoquímicos , Proteínas Recombinantes de Fusão , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Humanos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
16.
J Comput Chem ; 43(6): 391-401, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962296

RESUMO

Dynamics of protein cavities associated with protein fluctuations and conformational plasticity is essential for their biological function. NMR ensembles, molecular dynamics (MD) simulations, and normal mode analysis (NMA) provide appropriate frameworks to explore functionally relevant protein dynamics and cavity changes relationships. Within this context, we have recently developed analysis of null areas (ANA), an efficient method to calculate cavity volumes. ANA is based on a combination of algorithms that guarantees its robustness against numerical differentiations. This is a unique feature with respect to other methods. Herein, we present an updated and improved version that expands it use to quantify changes in cavity features, like volume and flexibility, due to protein structural distortions performed on predefined biologically relevant directions, for example, directions of largest contribution to protein fluctuations (principal component analysis [PCA modes]) obtained by MD simulations or ensembles of NMR structures, collective NMA modes or any other direction of motion associated with specific conformational changes. A web page has been developed where its facilities are explained in detail. First, we show that ANA can be useful to explore gradual changes of cavity volume and flexibility associated with protein ligand binding. Secondly, we perform a comparison study of the extent of variability between protein backbone structural distortions, and changes in cavity volumes and flexibilities evaluated for an ensemble of NMR active and inactive conformers of the epidermal growth factor receptor structures. Finally, we compare changes in size and flexibility between sets of NMR structures for different homologous chains of dynein.


Assuntos
Química Computacional , Receptores ErbB/química , Simulação de Dinâmica Molecular , Modelos Moleculares , Conformação Proteica
17.
J Biomol Struct Dyn ; 40(10): 4713-4724, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33345701

RESUMO

Breast cancer is the most prevalent cancer in women worldwide. To treat human breast cancer by inhibiting EGFR and HER2 targets is an important therapeutic option. Phytochemicals are found to have beneficial health effects in treating various diseases. An effort has been made to virtually screen phytochemical inhibitor by molecular docking and dynamic simulation in the current studies. The docking scores analysis resulted in a common hit Panaxadiol ligand with a low dock score for EGFR and HER2 targets. The inhibitory action of the phytocompounds was also validated by comparing it with the reference compounds Erlotinib for EGFR and Neratinib for HER2. Molecular dynamic simulation of EGFR and HER2 lead complexes ensure the ligand's appropriate refinement in the dynamic system. The target and ligand complex interaction motif established a high affinity of lead candidates in a dynamic system similar to molecular docking results. This study reveals that Panaxadiol hit molecule can be developed as a novel multi-target EGFR and HER2 target inhibitor with greater potential and low toxicity.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Receptores ErbB/química , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor ErbB-2/uso terapêutico
18.
J Biomol Struct Dyn ; 40(2): 622-634, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32880212

RESUMO

Research aimed at developing potent di-indol-3-yl disulphides for cancer diseases makes use of various theoretical techniques to evaluate the drug-likeness parameters and the mode of action. A drug-likeness filter helps evaluate the therapeutic potency of four bis-indole derivatives, structurally related to 3,3'-methanediyl-bis-indole (DIM) but having the S-S instead of the methylene linker and showing a high inhibitory impact on the variants of cancer cell lines (among them HL-60 and DU-145). Based on in vitro experimental results for their close analogues, a correlation was found between the epidermal growth factor receptor kinase (EGFR) inhibition and the theoretical energy of complexation. Docking studies of ligands followed by molecular dynamics were performed at the ATP-binding site of EGFR tyrosine kinase to scrutinize the inhibition of the di-indol-3-yl disulphides at a molecular level. Derivatives with bromine or iodine substituents at C-5 positions of the indole moieties made strong complexes by interaction with the most important hinge region residues Met-793 and Cys-733. The inhibition model for EGFR kinase and the proposed procedures can be very informative in the biological testing of selected bis-indoles and may be useful for future research on effective inhibitors for the treatment of EGFR-related cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Receptores ErbB , Simulação de Dinâmica Molecular , Sítios de Ligação , Dissulfetos , Receptores ErbB/química , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
19.
J Biomol Struct Dyn ; 40(13): 6183-6192, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33525984

RESUMO

Breast cancer (BC) is a second common malignancy in female globally. Hence, identification of novel therapeutic agents is extremely important. Molecular docking and MD simulation are the important tools in the process of drug discovery for searching the potential hits. The structure-based drug designing technique also reveals the information about ligands behavior in computational environment. Docking tools help in visualization and analysis of protein-ligand complex at atomic level. Molecular dynamics shows the stability of the molecules in the receptor cavity in the simulated environment. In this research work, we have screened potent phytochemicals against the BC. We docked the phytochemicals and examined the binding affinities of ligands towards the EGFR, HER2, estrogen and NF-κB receptors. Pristimerin, ixocarpalactone A, viscosalactone B and zhankuic acid A have shown higher binding affinities and energies towards targeted receptors among the screened phytochemicals. MD simulation study shows stability of docked complex for pristimerin and HER2 receptor. These phytochemicals can be repurposed for their anticancer activity. This in-silico work provides a strong ground for further investigation of their anticancer activity.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Compostos Fitoquímicos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Detecção Precoce de Câncer , Receptores ErbB/química , Estrogênios , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NF-kappa B , Triterpenos Pentacíclicos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
20.
J Biomol Struct Dyn ; 40(16): 7545-7554, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33749517

RESUMO

Epidermal growth factor receptors are constitutively overexpressed in breast cancer cells, which in turn stimulate many downstream signaling pathways that are involved in many carcinogenic processes. This makes EGFR a striking target for cancer therapy. This study focuses on the EGFR kinase domain inactivation by novel synthesized indoline derivatives. The compounds used are N-(2-hydroxy-5-nitrophenyl (4'-methyl phenyl) methyl) indoline (HNPMI), alkylaminophenols - 2-((3,4-Dihydroquinolin-1(2H)-yl) (p-tolyl) methyl) phenol (THTMP) and 2-((1, 2, 3, 4-Tetrahydroquinolin-1-yl) (4 methoxyphenyl) methyl) phenol (THMPP). To get a clear insight into the molecular interaction of EGFR and the three compounds, we have used ADME/Tox prediction, Flexible docking analysis followed by MM/GB-SA, QM/MM analysis, E-pharmacophore mapping of the ligands and Molecular dynamic simulation of protein-ligand complexes. All three compounds showed good ADME/Tox properties obeying the rules of drug-likeliness and showed high human oral absorption. Molecular docking was performed with the compounds and EGFR using Glide Flexible docking mode. This showed that the HNPMI was best among the three compounds and had interactions with key residue Lys 721. The protein-ligand complexes were stable when simulated for 100 ns using Desmond software. The interactions were further substantiated using QM/MM analysis and MM-GB/SA analysis in which HNPMI was scored as the best molecule. All the analyses were carried out with a reference molecule-Gefitinib which is a known standard inhibitor of EGFR. Thus, the study elucidates the potential role of the indoline derivatives as an anti-cancer agent against breast cancer by effectively inhibiting EGFR.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Receptores ErbB , Receptores ErbB/química , Feminino , Humanos , Indóis , Ligantes , Simulação de Acoplamento Molecular , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...